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Abstract

Recently, new methods based on the use of genetic
algorithms have been explored and developed for
solving crystal structures directly from powder diffrac-
tion data. In implementing genetic algorithms in such
applications, several different aspects of the technique
and strategy are open to optimization, leading to a
versatile and powerful approach. In this paper, the
fundamental concepts underlying genetic algorithms are
discussed and the implementation of the genetic
algorithm for structure solution from powder diffraction
data is described. The opportunities, scope and potential
for future developments in the foundations and
applications of genetic algorithms in this ®eld are
highlighted. The genetic algorithm approach adopts
the `direct-space' philosophy for structure solution, with
trial structures generated independently of the experi-
mental diffraction data and the quality of each structure
assessed by comparing the calculated and experimental
powder diffraction patterns; in this work, this compari-
son is made using the pro®le R factor Rwp. In the genetic
algorithm, a population of trial structures is allowed to
evolve subject to well de®ned rules governing mating,
mutation and `natural selection'. The `®tness' of each
structure in the population is a function of its pro®le R
factor. The successful application of the genetic algor-
ithm approach for structure solution of molecular
crystals from powder diffraction data is demonstrated
with examples of previously known and previously
unknown structures.

1. Introduction to structure solution from powder
diffraction data

1.1. The traditional approach

The determination of crystal structures from single-
crystal X-ray diffraction data can generally be carried
out straightforwardly, provided single crystals of
appropriate size and quality are available. However,
many crystalline solids cannot be prepared in the form
of appropriate single crystals and are therefore not
amenable to structural characterization by conventional
single-crystal X-ray diffraction techniques. In such cases,

progress relies on the availability of techniques for
crystal-structure determination using powder diffraction
data (Christensen et al., 1985; Cheetham & Wilkinson,
1991, 1992; McCusker, 1991; Rudolf, 1993; Harris &
Tremayne, 1996; Langford & LoueÈr, 1996; Poojary &
Clear®eld, 1997) or microcrystal diffraction data
(recorded using synchrotron X-radiation) (Harding,
1996; Harding et al., 1994; Gray et al., 1997; Noble et al.,
1997).

The traditional approach (Christensen et al., 1985;
McCusker, 1991; Cheetham & Wilkinson, 1991, 1992;
Rudolf, 1993; Harris & Tremayne, 1996; Langford &
LoueÈr, 1996; Poojary & Clear®eld, 1997) for solving
crystal structures directly (ab initio) from powder
diffraction data has been to extract the intensities I(hkl)
of individual re¯ections directly from the powder
diffraction pattern and then to solve the structure by
using these intensities I(hkl) in the types of calculation
(e.g. direct methods and the Patterson method) adopted
for single-crystal diffraction data. However, this
approach is associated with intrinsic dif®culties, origi-
nating primarily from peak overlap in the powder
diffraction pattern. Essentially, single-crystal and
powder diffraction patterns contain the same informa-
tion; however, in the case of single-crystal diffraction
data, this information is distributed in three-dimensional
space, whereas in the case of powder diffraction data the
three-dimensional information is compressed into one
dimension. As a consequence, there is usually consid-
erable overlap of peaks in a powder diffraction pattern,
leading to dif®culties and ambiguities in extracting
values of the relative intensities I(hkl) of individual
diffraction maxima that are suf®ciently reliable to lead
to successful structure solution.

Thus, as peak overlap in the powder diffraction
pattern limits the potential for successful structure
solution by the traditional approach, much attention has
been devoted to the development of improved tech-
niques for extracting accurate relative intensities for
overlapping peaks. Recent progress in this regard
includes the application of relations between the struc-
ture factors derived from direct methods and the
Patterson function (Jansen et al., 1992), the use of an
iterative procedure involving calculation of a squared



Patterson map and subsequent back-transformation to
give a new set of structure factors for overlapped
re¯ections (Estermann et al., 1992; Estermann &
Gramlich, 1993), the development of a method based on
entropy maximization of a Patterson function (David,
1987, 1990) and the use of Bayesian ®tting procedures
(Sivia & David, 1994). We also note that the technique
of entropy maximization and likelihood ranking has
been implemented successfully in strategies for structure
solution from powder diffraction data (Gilmore et al.,
1993; Gilmore, 1996). In this approach, groups of over-
lapping peaks are handled in a rational manner allowing
intensity information for these peaks to be used
productively, together with the intensities of the non-
overlapping peaks, in the structure solution process.

In view of the intrinsic problems associated with
extracting accurately the intensities I(hkl) of individual
re¯ections directly from the powder diffraction pattern,
progress has also been made in recent years in the
development of an alternative strategy for structure
solution ± the so-called `direct-space' approach ± in
which the need to extract such intensity information
from the powder diffraction pattern is avoided and the
powder diffraction data is used directly in its `raw'
digitized form.

1.2. The `direct-space' strategy

In the `direct-space' strategy (Harris et al., 1994;
Harris, Kariuki & Tremayne, 1998; Harris & Tremayne,
1996) for crystal-structure solution from powder
diffraction data, trial structures are generated in direct
space, independently of the experimental data, with the
suitability of each trial structure assessed by directly
comparing the powder diffraction pattern calculated for
the trial structure and the experimental powder
diffraction pattern. This comparison can be quanti®ed
using the weighted pro®le R factor (Rwp, see x4.3), as
used in Rietveld re®nement. Importantly, Rwp considers
the whole digitized intensity pro®le rather than the
integrated intensities I(hkl) of individual diffraction
maxima. Thus, Rwp implicitly takes care of peak overlap
(provided an appropriate peak-shape function is
known). The `direct-space' strategy does not require
I(hkl) values to be extracted from the experimental
powder diffraction pattern and thus overcomes the
major problem associated with the traditional approa-
ches for structure solution.

In essence, the `direct-space' strategy involves
exploring a hypersurface, Rwp(X), to ®nd the best
structure solution (lowest Rwp), where {X} represents
the set of variables that de®ne the structure. Expressed
in this way, structure solution becomes equivalent to
global optimization and therefore any technique for
global optimization can, in principle, be used as a
method for `direct-space' structure solution.

In applying the `direct-space' strategy, the structure is
generally de®ned by a `structural fragment', which
represents an appropriately chosen collection of atoms
within the asymmetric unit. The variables in {X} describe
features such as the position, orientation and intra-
molecular geometry of the structural fragment. For
example, for a structure comprising one molecule of well
de®ned (rigid) geometry in the asymmetric unit, the set
{X} may comprise six variables {x, y, z, �, ',  } de®ning
the position and orientation of the structural fragment.
Fewer variables may be required if elements of mol-
ecular symmetry and crystal symmetry coincide ± for
example, for a planar molecule lying in a mirror plane
with ®xed z coordinate, three variables {x, y,  } are
suf®cient (where  represents rotation about the z axis).
If the molecular conformation is not known with
certainty beforehand, it is necessary to include a number
of torsion angles (�, �, . . . ) as variables within the
structure solution calculation; thus more than six vari-
ables {x, y, z, �, ',  , �, �, . . . } are required to de®ne
the structural fragment.

Initial work on direct-space structure solution focused
on the development of Monte Carlo (Harris et al., 1994;
Harris, Kariuki & Tremayne, 1998; Kariuki et al., 1996;
Tremayne et al., 1996a,b; Ramprasad et al., 1995;
Tremayne, Kariuki & Harris, 1997; ElizabeÂ et al., 1997;
Tremayne, Kariuki, Harris, Shankland & Knight, 1997)
and simulated annealing (Newsam et al., 1992; Andreev
et al., 1996, 1997) methods for exploring the Rwp(X)
hypersurface. In the present paper, we describe a
method for `direct-space' structure solution based on the
application of a genetic algorithm to explore the Rwp(X)
hypersurface.

In x2, we consider the general concepts underlying the
application of genetic algorithms in global optimization,
and then consider (xx3±5) details of our implementation
of the genetic algorithm technique for structure solution
from powder diffraction data. Opportunities for future
extension and optimization of this technique are
discussed in xx4 and 6.

2. Genetic algorithms

2.1. Fundamentals

The genetic algorithm (abbreviated as GA) is an
optimization technique (Goldberg, 1989; Cartwright,
1993; Keane, 1996) based on the principles of evolution.
The technique involves familiar evolutionary operations
such as mating, mutation and `natural selection',
through which the ®ttest members of a population
survive and procreate, passing their genetic information
onto subsequent generations to produce descendants of
improved quality. The use of GAs for global optimiza-
tion relies on the fact that the GA should ultimately
produce offspring that are optimal (or near to optimal)
with respect to the criterion used to de®ne the quality
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(`®tness') of the individual members of the population.
In principle, the GA can be applied to any problem in
which the quantity (G) to be optimized [such as
potential energy or crystallographic R factor (see
below)] can be written as a function of a string (set) of
variables ÿ � f
1; 
2; 
3; . . . ; 
ng.

By analogy with biological evolution, genetic
nomenclature is often employed in discussing the GA
method. Thus, the strings ÿ are equivalent to chromo-
somes and the individual variables 
 i within a string
correspond to genes. The speci®c values taken by these
variables for a particular member of the population
correspond, in genetic terminology, to alleles.

At the start of the GA calculation, a speci®ed number
of strings (comprising the initial population) are gener-
ated at random in order to provide a diverse starting
point for the calculation. The number of strings in the
population is typically of the order of tens or hundreds.

The ®tness (F ) of a string is a measure of its quality
with respect to the property G being optimized and
®tness can therefore be de®ned as an appropriate
function of G. For example, in our application of GAs in
structure solution from powder diffraction data, struc-
tures giving rise to good agreement between experi-
mental and calculated diffraction data have high ®tness.
The evolution of the GA is such that the strings of
highest ®tness have the best chance of passing on their
characteristics (i.e. genetic information) to the next
generation. The ®tness function should be able to
provide good discrimination between good and bad
strings within the population at all stages of the evolu-
tion of the population.

As in biological evolution, the population is allowed
to evolve through subsequent generations via the
procedures of mating, mutation and `natural selection'.
In the mating procedure (also known as crossover), pairs
of strings (parents) are selected from the population on
the basis of their ®tness. The mating procedure is
accomplished by cutting and splicing the strings repre-
senting the two parents; thus, new individuals (offspring)
are produced by mixing genetic information (exchan-
ging genes) from the two parents. The simplest mating
procedure corresponds to single-point crossover, in
which the parent strings are cut at a single position, and
the cut segments are swapped. Thus, if mating between
parent 1 {a1, b1, c1, d1, e1} and parent 2 {a2, b2, c2, d2, e2}
is carried out by single-point crossover between the
third (ci) and fourth (di) genes, the two offspring
{a1, b1, c1, d2, e2} and {a2, b2, c2, d1, e1} are generated.
More complicated mating procedures, such as double-
point crossover and extensions thereof, can also be
carried out and should be advantageous when the strings
comprise a large number of variables. Some of these
alternative mating procedures are discussed in x4.5.2.

After generating the offspring, only the strings of
highest ®tness from the set of offspring and parents are
chosen to form the next generation, analogous to the

process of `natural selection'. This step is crucial in
leading to optimization within the GA method and
ensures that the overall quality of the population
increases from one generation to the next.

In the mutation procedure, strings are selected
randomly from the population, and random changes are
made to parts of their genetic information to generate
new strings (mutants). The introduction of mutants
within the population is necessary to maintain genetic
diversity (i.e. to prevent in-breeding within the popula-
tion) and to prevent the GA calculation converging on a
non-optimal string (stagnation). In general, the intro-
duction of mutants within the population allows new
regions of parameter space to be explored. For a given
population, certain regions of parameter space might
not be accessible through the mating procedure alone, as
mating does not introduce new genes into the popula-
tion (instead, mating mixes the existing genetic infor-
mation in different ways).

Advantages of the GA method for optimization (in
comparison with alternative approaches based on
minimization) include the fact that the members of the
initial population are not required to be close to the
global minimum, and the fact that the GA calculation
does not stop when a local minimum on the hyper-
surface is reached. In general, the GA calculation is
carried out for a speci®ed number of generations or
until some pre-selected criterion (based, for example,
on the value of G for the best member of the popula-
tion) is achieved.

An important consideration in applying the GA
method is the size of the population. Populations that
are too small tend to become dominated by a single
string and its offspring, leading to loss of diversity and
stagnation of the population. If the population is too
large, on the other hand, the best strings may become
overwhelmed by a large number of marginally poorer
strings, leading to inef®cient convergence towards the
optimal string.

A necessary criterion for the applicability of the GA
method in optimization is that certain combinations of
variables in the string can be recognized to be associated
with high (or low) ®tness. These groups of genes are
known as schemata, and their existence lies at the heart
of the ability of the GA to improve the ®tness of a
population by mating. Clearly this is an important
requirement governing the potential for success of the
GA technique. Thus, if a subset of the genes within a
given string is close to optimal but the other genes are
not optimal, it is important that the GA calculation can
recognize (e.g. on the basis of ®tness) the existence of
the subset of genes that are close to optimal and can
retain and propagate this subset of genes in the subse-
quent evolutionary process. If such schemata do not
exist, the GA method becomes little more than a
random search procedure and will not be an ef®cient
approach for global optimization.
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Another crucial feature of the GA approach is that it
operates effectively in a parallel manner; many different
strings, and hence different regions of parameter space,
are investigated simultaneously. Furthermore, informa-
tion concerning different regions of parameter space is
passed actively between the individual strings by the
mating procedure, disseminating genetic information
throughout the population. This exchange of informa-
tion between strings (i.e. combining information from
different regions of the hypersurface) is a signi®cant
feature that lends ef®ciency to the GA approach (it is
noteworthy that this feature is absent in most alternative
approaches for optimization, such as running a large
number of Monte Carlo calculations in parallel over
different regions of the hypersurface). The implicit
parallel nature of the GA approach makes it an ef®cient
and robust method for optimization and makes it
particularly advantageous for the optimization of func-
tions of many variables.

2.2. Applications of genetic algorithms

GAs have found many applications in science, engi-
neering and business (Goldberg, 1989; Keane, 1996) and
a number of applications in chemistry have been
reported (Cartwright, 1993), ranging from studies of
protein folding to conformational optimization of long-
chain molecules. In molecular modelling applications, in
which the aim is to locate the global minimum on a
potential energy hypersurface, it has been found
(Brodmeir & Pretsch, 1994) that the GA is generally
superior to alternative approaches based on molecular
dynamics calculations or Monte Carlo sampling. GAs
are also ®nding increasing use in optimization of the
structures of atomic clusters (Hartke, 1995; Deaven &
Ho, 1995; Deaven et al., 1996).

Recently, the opportunity of using GA techniques in
structure solution from powder diffraction data was
recognized independently and at the same time by two
research groups (Shankland et al., 1997; Kariuki et al.,
1997; Harris, Johnston, Kariuki & Tremayne, 1998;
Harris, Kariuki, Tremayne & Johnston, 1998). As
discussed above, in developing strategies for applying
genetic algorithms, several aspects of the method may be
implemented in different ways. In this regard, the
approaches of the two groups differ in the details of the
strategies for carrying out mating, mutation and natural
selection in evolving the population from one genera-
tion to the next and differ in the choice of ®tness func-
tion used to assess the quality of each structure within
the population. In our approach, the ®tness of each
member of the population is determined using an
appropriate function of Rwp (see x4.3); this choice gives
emphasis to the issues discussed in x1.2 and the phil-
osophy of using directly the digitized experimental
powder diffraction data `as measured'. Furthermore, as
discussed in x4.3, the use of appropriate functions of Rwp

(as opposed to Rwp itself) provides considerable scope
for optimization of the GA strategy and allows the
advantages of dynamic scaling. In the approach of
Shankland et al. (1997), the ®tness of members of the
population is given by the ®gure of merit �2, which is
based on the intensities of individual re¯ections I(hkl)
extracted from the powder diffraction pattern using the
Pawley re®nement procedure (Pawley, 1981; Toraya,
1993). It is important to emphasize that the de®nition of
�2 incorporates the covariance matrix (as derived from
the Pawley re®nement) and the use of the covariance
matrix in this way serves to overcome problems that may
otherwise arise (see x1.1) when considering the inten-
sities of individual re¯ections extracted from the powder
diffraction pattern. Clearly an approach based on using
�2 rather than Rwp to compare the experimental and
calculated powder diffraction data allows a faster
calculation of the ®tness function. It is clear that, in
implementing genetic algorithms in this ®eld, several
different aspects of the technique and strategy are open
to optimization and different strategies may each be
advantageous to a greater or lesser extent depending on
the particular problem under investigation. In this
paper, we discuss fundamental aspects of our imple-
mentation of the GA method for structure solution from
powder diffraction data and highlight several opportu-
nities for future developments and improvements. Three
examples, encompassing both previously known and
previously unknown crystal structures, are used to
illustrate the strategies for applying this method.

3. Structures studied

To demonstrate the application of our GA method for
structure solution from powder diffraction data, three
examples are discussed. Two previously known struc-
tures (para-methoxybenzoic acid and formylurea) are
considered as test cases.

The structure of para-methoxybenzoic acid (P21=a;
a � 16.97, b � 10.96, c � 3.97 AÊ , � � 98.1�) was solved
previously (Tremayne et al., 1996a) from powder X-ray
diffraction data using the Monte Carlo method and was
also determined previously (Colapietro & Domenicano,
1978) from single-crystal X-ray diffraction data. The
structure of formylurea (Pn21a; a � 16.82, b � 6.06, c �
3.67 AÊ ) was solved previously (Lightfoot et al., 1992)
from powder X-ray diffraction data using direct
methods. The experimental powder X-ray diffraction
patterns recorded for para-methoxybenzoic acid and
formylurea in our previous studies of these materials
(Lightfoot et al., 1992; Tremayne et al., 1996a) were also
used for the GA structure-solution calculations reported
here.

The structure solution of ortho-thymotic acid repre-
sented the ®rst application of our GA method to solve a
previously unknown structure. Measurement of the
powder X-ray diffractogram for ortho-thymotic acid,
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unit-cell determination (a� 11.08, b� 8.15, c� 11.78 AÊ ,
� � 100.2�) and space-group assignment (P21=n) have
been discussed elsewhere (Kariuki et al., 1997). There is
one molecule of ortho-thymotic acid in the asymmetric
unit.

4. The GA method for structure solution from powder
diffraction data

4.1. Preliminaries

We now describe speci®c aspects of our GA method
for structure solution from powder diffraction data, as
embodied within the program GAPSS (Johnston et al.,
1997; Kariuki et al., 1997; Harris, Johnston, Kariuki &
Tremayne, 1998; Harris, Kariuki, Tremayne & Johnston,
1998). A schematic illustration of the method governing
the evolution of the population from one generation to
the next in this program is shown in Fig. 1 and the
methodology is discussed in more detail in xx4.2±4.9.
Before running the GA program, we require to know
the lattice parameters and space group (determined
directly from the powder diffraction pattern) and it is
necessary to make an appropriate choice of the struc-
tural fragment (see xx1.2 and 4.2). As discussed in xx1.2
and 4.2, each structure in the population is characterized
by a string of parameters {X}. The values of these
parameters are real numbers (note that most applica-
tions of GAs in other ®elds use strings of binary
numbers).

4.2. The structural fragment

In the GA approach for structure solution, each
member of the population is a trial crystal structure,
de®ned by a set of variables {X}, representing the
position, orientation and internal geometry of the
structural fragment. The choice of structural fragment
for any particular problem is not necessarily unique.
Ideally, the structural fragment should include all
signi®cantly scattering atoms in the asymmetric unit (i.e.
all non-H atoms in the case of powder X-ray diffraction)
but in many cases it may be desirable to omit certain
atoms (to be found later by difference Fourier tech-
niques) from the structural fragment in order to restrict
the number of parameters in {X} (i.e. by limiting the
number of internal degrees of freedom). The factors
governing the choice of structural fragment are analo-
gous to those discussed previously (Kariuki et al., 1996;
Harris & Tremayne, 1996; ElizabeÂ et al., 1997) in the
context of the Monte Carlo technique for structure
solution.

In the GA calculation for para-methoxybenzoic acid,
the structural fragment (Fig. 2a) was a rigid unit
comprising the C and O atoms of the benzoate group
(C6CO2) and the O atom of the methoxy group. Stan-
dard geometries (bond lengths and bond angles) were
used, with the carboxylic acid group simpli®ed by setting

the two CÐO bond lengths to be equal and with all
atoms constrained to lie in the same plane. With one
molecule of para-methoxybenzoic acid in the asym-
metric unit, the crystal structure is de®ned by six degrees
of freedom, representing the position (x, y, z) of the
centre of mass of the structural fragment and the
orientation (�, ',  ) of the structural fragment relative
to a space-®xed axis system. Thus, each member of the
population in the GA calculation is de®ned by a string of
six variables: {X} � {x, y, z, �, ',  }.

For formylurea (Fig. 2b) and ortho-thymotic acid (Fig.
2c), the structural fragments comprised all non-H atoms
of the molecule. Standard geometries (bond lengths and
bond angles) were used, with the exception that for
ortho-thymotic acid the lengths of the two CÐO bonds
in the carboxylic acid group were taken to be equal. For
both formylurea (Fig. 2b) and ortho-thymotic acid (Fig.
2c), the structural fragment was allowed some degree of
¯exibility, with two internal degrees of freedom (internal
rotations about speci®ed bonds) considered in each case.
The structural fragment in each case is de®ned by a
string of eight variables: {X} � {x, y, z, �, ',  , �, �}.
Three variables de®ne the position (x, y, z), three vari-
ables de®ne the orientation (�, ',  ), and two torsion
angles (�, �) de®ne the intramolecular geometry of the
structural fragment. For formylurea, � and � are torsion

Fig. 1. Procedure for evolution of the population from one generation
(population Pj) to the next generation (population Pj+1) in our GA
method for structure solution from powder diffraction data.
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angles for rotation about the two CÐN bonds. For
ortho-thymotic acid, � is the torsion angle for rotation
about the CÐC bond between the carboxylic acid group
and the benzene ring and � is the torsion angle for
rotation about the CÐC bond between the isopropyl
group and the benzene ring. All other torsion angles for
ortho-thymotic acid were ®xed such that the benzene
ring and all atoms directly bonded to it were coplanar.

4.3. The ®tness function

In our GA approach for structure solution, the
probability of a given structure surviving into subse-
quent generations (through `natural selection') and the
probability of a given structure taking part in mating
depend on its ®tness. The ®tness of a given structure
depends on the weighted pro®le R factor [i.e. F �
f (Rwp)], which quanti®es the level of disagreement
between the calculated and experimental powder
diffraction patterns. The pro®le R factor takes into
consideration the entire powder diffraction pro®le (not
the integrated intensities of diffraction maxima) and
therefore implicitly takes care of the occurrence of peak
overlap. Importantly, Rwp considers the digitized
experimental diffraction data directly, with no manipu-
lation of these data (as would be performed, for
example, in extracting integrated peak intensities);
every point in the digitized powder diffraction pro®le is

considered as an individual intensity measurement. The
weighted pro®le R factor compares the calculated
powder diffraction pattern point by point against the
experimental powder diffraction pattern, as follows:

Rwp � 100

PN
i�1 wi�yi�exp:� ÿ yi�calc:��2PN

i�1 wi�yi�exp:��2
( )1=2

;

where yi(exp.) is the intensity of the ith data point in the
experimental powder diffraction pro®le, yi(calc.) is the
intensity of the ith data point in the calculated powder
diffraction pro®le and wi is the weighting factor for the
ith data point. For a given trial structure, the powder
diffraction pro®le is calculated using the following
information: (a) lattice parameters (to determine peak
positions); (b) atomic positions and atomic displacement
parameters (to determine peak intensities); (c) 2�-
dependent analytical functions to describe the peak
shapes and peak widths; and (d) a description of the
background intensity. The shape of a peak in a powder
diffractogram depends on features of both the instru-
ment and the sample and different types of peak-shape
function are appropriate under different circumstances.
The most widely used peak-shape function for powder
X-ray diffraction data is the pseudo-Voigt function,
which allows ¯exible variation of the Gaussian and
Lorentzian character of the peak shape. Analytical
functions are also used to describe the 2� dependence of
the peak width.

In our work so far using the GA method, three types
of ®tness function have been considered:

(i) exponential: F��� � exp�ÿS��;
(ii) tanh: F��� � 1

2 f1ÿ tanh�2��2�ÿ 1��g;
(iii) power: F��� � 1ÿ �n;

where

� � �Rwp ÿ Rmin�=�R; �R � Rmax ÿ Rmin

and Rmin and Rmax are the lowest and highest values of
Rwp in the current population, respectively. In each case,
F(�) takes its highest value [F(�) � 1] when � � 0 [i.e.
when Rwp � Rmin] and takes its lowest value when � � 1
[i.e. when Rwp � Rmax]. The values of Rmin and Rmax are
continually updated as the population evolves during
the GA calculation and the ®tness function is said to be
`dynamically scaled'. For a given ®tness function, the
ability to discriminate between different structures in
the population depends on the value of the denominator
�R in �, which can be regarded as a scaling factor. In
general, as �R becomes smaller, there is a greater level
of discrimination in ®tness between a given pair of
structures. The question of whether �R tends to
increase or decrease as the GA evolves depends to a
large extent on whether mutant structures (see x4.7) are
included in determining Rmax. If mutant structures are
omitted from the calculation of Rmax, �R will generally
decrease as the GA proceeds, which is desirable for
ef®cient dynamic scaling.

Fig. 2. Molecular structures and de®nitions of the structural fragments
used in the GA structure solution calculations for: (a) para-
methoxybenzoic acid; (b) formylurea; (c) ortho-thymotic acid.
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All three ®tness functions have maximum ®tness
F(0) � 1 when Rwp � Rmin (i.e. for the best member of
the population). For the power and tanh functions, the
value of minimum ®tness (i.e. for Rwp � Rmax) is F(1) �
0. For the exponential function, on the other hand, the
minimum ®tness (for � � 1) is F(1) � exp(ÿS) [thus, for
S >� 5, the minimum ®tness is F(1) <� 0.01]. The major
difference between the three types of ®tness function
considered concerns their behaviour for values of Rwp

between Rmin and Rmax, as shown in Fig. 3.
The exponential function is concave and becomes

more concave as S increases. This function discriminates
well between different good structures, as a wide range
of values of F(�) is covered by structures with low Rwp

and hence low � (the curve is steepest at � � 0).
However, the shallow nature of the curve around � � 1
means that a wide range of poor structures (i.e. with high
values of �) all have very low ®tness. For example, for
the exponential function with S � 5 (see Fig. 3), all
structures with � >� 0.5 have F(�) <� 0.1.

The power function is convex for n > 1 (and becomes
increasingly convex as n increases), linear for n � 1 and
concave for n < 1. In general, the power function is used
with n > 1. The power function with n > 1 gives good
discrimination between poor structures (for which the
curve is steepest) but little discrimination between good
structures. For example, for the power function with n�
3 (see Fig. 3), all structures with � <� 0.5 have F(�)>� 0.9.
In this regard, the behaviour of the power function with
n > 1 is directly opposite to the behaviour of the expo-
nential function.

The tanh function presents different behaviour in that
it does not discriminate signi®cantly among good
structures [e.g. all structures with � <� 0.3 have F(�)
close to 1] and does not discriminate signi®cantly among
poor structures [e.g. all structures with � >� 0.7 have F(�)
close to 0]. However, the tanh function does give good
discrimination between different structures in the
intermediate region 0.3 <� � <� 0.7. In this regard, we
note the approximate step-like character of the tanh
function. Another ®tness function that has similar
properties to the tanh function but is less steep
in the intermediate region, is the cosine function
F��� � 1

2 �1� cos���=2��.
All results presented in x5 were obtained using the

tanh function. Our preliminary studies using the power,
exponential and tanh functions suggest that the tanh
function tends to produce structures with low R factor
slightly more quickly than the power and exponential
functions. The cosine function has not yet been assessed
in our work.

Further studies are currently in progress to explore
the optimum choices of ®tness function for structural
fragments of differing complexity and to assess the use
of different types of ®tness function at different stages
during the GA calculation. For example, it may be
advantageous to use the tanh function (which discrimi-

nates mainly between good structures and poor struc-
tures but provides little discrimination among different
good structures) in the early stages of the GA calcula-
tion and to use the exponential function (which provides
better discrimination between different good structures)
in the later stages of the GA calculation.

4.4. The overall GA strategy

The initial population Po (`zeroth' generation) for the
GA calculation comprises Np randomly generated
structures. During the GA calculation, the population
evolves through a sequence of generations, with a given
population Pj+1 (generation j� 1) generated from the
previous population Pj (generation j) by the operations
of mating, mutation and `natural selection'. The overall
scheme for generating population Pj+1 from population
Pj in our implementation of the GA method is
summarized in Fig. 1. The number (Np) of structures in
the population remains constant for all generations, and
Nm mating operations and Nx mutation operations are
considered in the evolution of a given population Pj

to generate the next population Pj+1. Details of the
different components of the scheme shown in Fig. 1 are
discussed in xx4.5±4.9.

4.5. The mating procedure

4.5.1. Selection of parents. The probability of selecting
a given structure to take part in mating (as a `parent') is
related to its ®tness, such that structures with high ®tness
are more likely to be selected. In our procedure for
selecting parents, a structure (with ®tness Fs) is chosen

Fig. 3. Graphs showing the ®tness functions discussed in the text: (a)
exponential (for S � 5); (b) tanh; (c) power (for n � 3).
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from the population at random and a random number R
(with 0 � R � 1) is generated. The randomly selected
structure is then allowed to take part in mating if Fs > R.
This selection procedure is continued to ®nd a second
structure that is allowed to mate with the ®rst. Pairs of
structures selected consecutively in this way are allowed
to mate with each other, until the required number Nm

of mating operations has been carried out. Note that a
given structure could be selected several times as a
parent for mating operations.

Our approach is a variant of the so-called `roulette
wheel' selection procedure (Goldberg, 1989), in which
strings in a given generation (Pj) are selected with
probability proportional to their ®tness and copied into
a temporary population (a given string may be copied
more than once). Mating and mutation operations are
then performed by selecting strings from this temporary
population. The main difference between our approach
and this `roulette wheel' approach is that our mating
operation is carried out directly on consecutive pairs of
strings in the order that they are selected from the
population Pj, whereas the `roulette wheel' approach
involves two stages: (i) selection of strings to form the
temporary population, and then (ii) selection of pairs of
strings from the temporary population as parents for
mating. The order in which the strings are selected from
population Pj in stage (i) of the `roulette wheel'
approach is unimportant, whereas the order of selecting
strings from population Pj in our mating procedure is
crucial. The relative merits of these two approaches
have not yet been assessed.

An alternative approach (called `rank selection') that
may be used for selecting parents is to choose the N
members of the population with highest ®tness and to
perform a speci®ed number of mating operations by
choosing parents at random from this subpopulation.
This approach may avoid problems that can arise when
the population contains a small number of structures of
very high ®tness; with our present method, such struc-
tures would tend to be selected very often as parents and
would therefore dominate the mating procedure such
that the offspring exhibited little diversity. The suit-
ability of using the rank selection procedure within our
GA approach for structure solution from powder
diffraction data is currently being explored.

4.5.2. The mating operation. We now consider the
actual methods that we have used to generate offspring
by combining the parameters in the strings {X} that
de®ne the two selected parents.

For para-methoxybenzoic acid, with a rigid structural
fragment de®ned by six parameters, mating was carried
out by single-point crossover, with the strings for the
two selected parents cut and spliced between the posi-
tional and orientational parameters to produce two
offspring. Thus, the parents fxa; ya; zaj�a; 'a;  ag and
fxb; yb; zbj�b; 'b;  bg lead to the two offspring
fxa; ya; zaj�b; 'b;  bg and fxb; yb; zbj�a; 'a;  ag. We note

that, for a given pair of parents, this single-point cross-
over procedure will always generate the same pair of
offspring. In using this mating procedure, it is clearly
important to exclude the possibility that a given pair of
parents is chosen more than once in a given generation.

We now assess some general points concerning the
handling of a rigid structural fragment, as for para-
methoxybenzoic acid. Although the use of single-point
crossover between the positional and orientational
parameters is attractive in view of the physical signi®-
cance associated with separating the positional and
orientational information, there is no guarantee that this
is actually the most ef®cient approach for ®nding the
optimal structure solution. We are currently carrying out
a systematic investigation of this issue, considering
single-point crossover at randomly selected positions
within the string and multiple-point crossover. With
these alternative mating procedures, a given pair of
parents could produce several different pairs of
offspring, overcoming the problem encountered (as
discussed above) with single-point crossover at a ®xed
position within the string.

In the mating procedures for formylurea and ortho-
thymotic acid, the eight parameters in each string were
considered to comprise four groups {x, y, z|�, ',  |�|�}.
To carry out the mating operation between two selected
parents, the four groups were divided into two sets of
two groups. This can be performed in three different
ways:

�i� fx; y; zj�; ';  g and f�j�g
�ii� fx; y; zj�g and f�; ';  j�g
�iii� fx; y; zj�g and f�; ';  j�g:

In a given mating operation, one of these
ways of dividing the four groups was chosen (with
equal probability) and two offspring were generated
by taking the ®rst set of two groups from the
®rst parent and the second set of two groups
from the second parent, and vice versa. Thus,
mating the parents fxa; ya; zaj�a; 'a;  aj�aj�ag and
fxb; yb; zbj�b; 'b;  bj�bj�bg will lead, with equal prob-
ability, to one of the following three pairs of offspring:

�i� fxa; ya; zaj�a; 'a;  aj�bj�bg
and fxb; yb; zbj�b; 'b;  bj�aj�ag

�ii� fxa; ya; zaj�b; 'b;  bj�aj�bg
and fxb; yb; zbj�a; 'a;  aj�bj�ag

�iii� fxa; ya; zaj�b; 'b;  bj�bj�ag
and fxb; yb; zbj�a; 'a;  aj�aj�bg:

Many other options exist for mating and each of these
may be more or less advantageous in different circum-
stances. One promising mating procedure is to consider
an appropriate weighted average (interpolation) of
the corresponding parameters from the two parents,

K. D. M. HARRIS, R. L. JOHNSTON AND B. M. KARIUKI 639



leading from two parents fxa; ya; zaj�a; 'a;  aj�aj�ag
and fxb; yb; zbj�b; 'b;  bj�bj�bg to one offspring
fxo; yo; zoj�o; 'o;  oj�oj�og with �o � �1ÿ ���a � ��b,
where � represents each of the parameters x, y, z, �, ',  ,
� and �. The parameter � is in the range 0 < � < 1 and
may in general depend on the relative values of ®tness
for the two parents.

4.6. The intermediate population

The number of mating operations in each generation
is denoted Nm and, since each mating leads to two
offspring, the number of offspring produced is 2Nm. This
creates an intermediate population (Ij+1) comprising
Np � 2Nm structures ± i.e. Np structures from the
previous generation (Pj) and 2Nm offspring generated
by the mating procedure (taking parents from genera-
tion Pj). After the Nm mating operations have been
completed, the Rwp values for all offspring are calcu-
lated, new values of Rmin and Rmax are determined for
the intermediate population, and the values of ®tness for
all members of the intermediate population are calcu-
lated. If two or more structures are identical, all but one
of these structures is eliminated from the intermediate
population. Note that although each of the Np structures
carried through to the intermediate population from the
previous generation will have the same value of Rwp that
it had in the previous generation, its value of ®tness may
change, as ®tness depends on the current values of Rmin

and Rmax. The structures in the intermediate population
are then ranked according to their ®tness, in preparation
for the `natural selection' process (x4.8).

4.7. The mutation procedure

In each generation, a certain number of mutant
structures are generated in order to maintain diversity
within the population. In our mutation procedure, a
speci®ed number Nx of `parent' structures are selected at
random from the intermediate population, and a new
mutant structure is generated from each selected
`parent' by introducing random changes to some aspects
of its genetic information. It is important to note that the
`parent' structures used to create the mutants are not
replaced by the mutants but remain within the inter-
mediate population.

In principle, the mutation procedure could be intro-
duced in several different ways within the overall
scheme (Fig. 1) for converting population Pj to popu-
lation Pj+1. However, it is important (as in the scheme
shown in Fig. 1) that the mutant structures are allowed
the opportunity to take part in mating operations before
the process of `natural selection' is carried out. Thus,
while several of the mutants will themselves not repre-
sent good structures (and will be rejected from the
population at the ®rst `natural selection' step), they may
nevertheless be able to pass useful genetic information
into the population through the mating procedure.

For para-methoxybenzoic acid, mutation was carried
out by assigning new random values to one (randomly
selected) positional parameter (i.e. x, y or z) and one
(randomly selected) orientational parameter (i.e. �, ' or
 ) in each of the selected (`parent') structures. For
formylurea and ortho-thymotic acid, mutation was
carried out by randomly selecting two of the four groups
of parameters {x, y, z|�, ',  |�|�} [this can be performed
in six different ways (see x4.5.2)] and giving a new
random value to one parameter within each of the
selected groups. Thus, when selecting the group (x, y, z)
or the group (�, ',  ), only one (randomly selected)
parameter of the three within the group was given a new
value. This technique is known as static mutation, in that
the mutations are generated by assigning completely
new random values to one or more parameters for a
selected structure.

An alternative technique is dynamic mutation, in
which selected parameters are subjected to random
displacements from their values in the `parent' structure.
Thus, for a particular parameter � in the set {X}, the new
(mutated) value �m is given by

�m � �p � �r���max�;
where �p is the value of � in the `parent' structure,r is a
random number between ÿ1 and �1 and ��max is a
maximum allowed displacement. Dynamic mutation is
particularly useful for ®ne-tuning the population in the
later stages of the GA calculation, when static mutation
may cause too great a perturbation and may lead to
structures with very low ®tness (and a high probability
of being rejected in the next generation). We are
currently optimizing the strategy of starting with static
mutation and then introducing dynamic mutation in the
later stages of the GA calculation.

4.8. `Natural selection'

The population in the ( j� 1)th generation (Pj+1) is
produced by taking the Np ÿ Nx best (highest ®tness)
members of the intermediate population Ij+1 together
with the Nx mutant structures. The values of Rwp for the
mutants are calculated and the new values of Rmin and
Rmax for population Pj+1 are evaluated, allowing the
®tness of each structure in the new population Pj+1 to be
determined. The complete cycle involving mating,
mutation and `natural selection' is then repeated for a
speci®ed number (Ng) of generations or until some pre-
determined termination criterion (e.g. based on reaching
a suf®ciently low value of Rmin) is satis®ed.

Since the intermediate population Ij+1 includes all Np

structures from the previous generation Pj together with
the 2Nm new offspring, it is guaranteed that the value of
Rwp for the best structure in population Pj+1 must be less
than or equal to the value of Rwp for the best structure in
population Pj. Thus, Rmin cannot increase from one
generation to the next. The population size (Np) remains
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constant from one generation to the next and the best
structures in a given generation are almost certain to be
carried forward into the next generation (i.e. it is un-
likely that all offspring generated by mating will have
higher ®tness than the ®ttest members of the population
in the previous generation).

Such approaches in which `natural selection' is carried
out on an intermediate population comprising all
offspring and all structures from the previous generation
are described as `elitist'. The elitist approach has a
number of advantages over possible alternatives, such as
carrying forward only the best offspring to construct the
next generation. An alternative elitist strategy is to
maintain a `pool' of structures from previous genera-
tions for occasional (random) reintroduction into the
population. This approach may be particularly advan-
tageous when the population improves from a good
structure but starts to stagnate (i.e. to show no signi®-
cant improvement) after a few generations.

Another method that may be used to ensure diversity
of the population and avoid inbreeding is to split the
population into a number of subpopulations which
evolve quasi-independently. A small amount of mating
is allowed between the subpopulations, allowing new
genes occasionally to enter the `gene pool' for a given
subpopulation. We have not yet assessed this approach
with regard to structure solution from powder diffrac-
tion data.

In summary, the process of `natural selection' ensures
that the best structures survive into successive genera-
tions. The overall quality of the population ± assessed by
the average (mean) value of Rwp (denoted Rave) for the
population ± generally improves from one generation to
the next. However, if (as in the present case) mutants
are included in the calculation of Rave, the value of Rave

may sometimes increase slightly on passing from one
generation to the next.

4.9. The choice of parameters for the GA calculation

We have carried out some preliminary work to opti-
mize the parameters Np, Nm and Nx which are input into
the GA calculation, although a more detailed optimi-
zation is currently in progress. For all three structures
described here, the GA calculation involved a popula-
tion size of 100 structures (Np � 100). In each genera-
tion, 50 mating operations (Nm � 50) were carried out,
giving rise to 100 offspring. The size of the intermediate
population was 200 structures, of which the best 90
structures (i.e. Np ÿ Nx) were passed forward (through
the process of `natural selection') to the next generation.
In each generation, 10 mutant structures (Nx � 10) were
generated. Although all the GA calculations described
here were run for Ng � 100 generations, far fewer than
100 generations were actually required for the correct
structure solution to be obtained (see x5).

5. Examples of structure solution using the GA method

The progress of the GA structure solution calculation
can be monitored by plotting the evolution of the best
(Rmin) and average (Rave) values of Rwp as a function of
the generation number (ng); we refer to this as the
evolutionary progress plot (EPP). Such plots are shown
in Figs. 4, 5 and 6 for para-methoxybenzoic acid,
formylurea and ortho-thymotic acid, respectively. In all
cases, Rmin and Rave decrease rapidly in the early
generations (ng

<� 10) and the plots of Rmin versus ng for
para-methoxybenzoic acid and formylurea show
approximate convergence at ng � 43 and ng � 19,
respectively. For ortho-thymotic acid, Rmin appears to
converge at ng� 39 (corresponding to the beginning of a
long plateau in the Rmin versus ng plot), although there is
a further signi®cant drop in Rmin at ng � 80 (see below).
The general behaviour of the plots of Rmin versus ng

Fig. 4. Evolutionary progress plot for para-methoxybenzoic acid,
showing the evolution of Rmin (®lled circles) and Rave (open circles)
as a function of generation number (ng).

Fig. 5. Evolutionary progress plot for formylurea, showing the
evolution of Rmin (®lled circles) and Rave (open circles) as a
function of generation number (ng).
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suggests that the most signi®cant improvements in the
quality of the best structure solution occur in the early
stages of the GA calculation.

The crystal structures of para-methoxybenzoic acid
and formylurea were known prior to the work described
here and the success of the GA method is demonstrated
by comparing (Figs. 7 and 8) the best structure found
from the GA calculation [i.e. the structure corre-
sponding to Rmin in the ®nal generation (ng � 100)] and
the position of the structural fragment in the known
structure. In both cases, the best structure solution
generated by the GA calculation is very close to the
known structure ± the maximum distance (dmax) and
average distance (dave) between corresponding atom
positions in the structure solution and the known
structure are dmax � 0.66 AÊ and dave � 0.47 AÊ for para-
methoxybenzoic acid (Fig. 7) and dmax � 0.93 AÊ and
dave � 0.44 AÊ for formylurea (Fig. 8). In both cases, the
structure solution found from the GA calculation re®nes
readily to give the known structure on Rietveld re®ne-
ment [in the present work, all Rietveld re®nement
calculations were carried out using the GSAS program
(Larson & Von Dreele, 1987)].

The above discussion considered the best structures
obtained at the end of the GA calculations (i.e. after 100
generations) and we now assess how early the correct
structure solution has actually been obtained in these
GA calculations. For para-methoxybenzoic acid (Fig. 4),
it is found that the best structure after only ®ve
generations (at which Rmin drops from 43 to 34%)
re®nes to the known structure, whereas, for formylurea
(Fig. 5), it is found that the best structure after six
generations re®nes to the known structure. Thus, after a
very small number of generations in both cases, the GA
calculation has successfully located and discriminated a
position, orientation and intramolecular geometry for
the structural fragment re®nably close to its true posi-

tion, orientation and intramolecular geometry in the
crystal structure. In this regard, it is important to
emphasize that none of the (randomly chosen) starting
structures was close to the correct structure (it is clear
from Figs. 4 and 5 that the value of Rmin for the zeroth
generation is large in both cases).

For ortho-thymotic acid, the crystal structure was not
known prior to the GA calculation and the quality of the
structure solution can only be assessed by comparing the
calculated and experimental powder diffraction pro®les
following full Rietveld re®nement, as well as assessing
the chemical and structural plausibility of the ®nal
re®ned structure. Rietveld re®nement (Fig. 9) from the
best structure solution obtained in the GA calculation
gave Rwp � 3.2%, and the ®nal re®ned crystal structure
is shown in Fig. 10. This structure, which has been
discussed elsewhere (Kariuki et al., 1997), is completely
reasonable on structural and chemical grounds. For
example, the structure is found to exhibit the familiar
carboxylic acid dimer recognition motif, without this (or
any other type of) intermolecular contact being imposed

Fig. 6. Evolutionary progress plot for ortho-thymotic acid, showing the
evolution of Rmin (®lled circles) and Rave (open circles) as a function
of generation number (ng).

Fig. 8. Comparison between the position of the structural fragment in
the best structure solution obtained in the GA calculation for
formylurea (open circles) and the position of the corresponding
atoms in the known crystal structure (®lled circles).

Fig. 7. Comparison between the position of the structural fragment in
the best structure solution obtained in the GA calculation for para-
methoxybenzoic acid (open circles) and the position of the
corresponding atoms in the known crystal structure (®lled circles).
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during the GA calculation. The best structure solution in
the plateau region (see Fig. 6) extending from ng� 39 to
ng � 79 (with Rmin � 19%) also re®nes to the same
structure, emphasizing again that the correct structure
solution has been found comparatively early in the GA
calculation.

6. Concluding remarks

The results presented in this paper demonstrate the
success of the GA method for crystal structure solution
from powder diffraction data, particularly in the case of
molecular crystals. In all cases, the correct structure
solution was found readily and after a relatively small
number of generations in the GA calculation. Indeed,
preliminary comparisons suggest that the GA method
may be a faster approach for ®nding the correct struc-
ture solution than the Monte Carlo technique. At the
heart of this is the implicit parallel nature of the GA
technique, which simultaneously considers a large
number of structures (of the order of Np � 2Nm � Nx) in
each generation, spanning a wide range of parameter
space, and passing information (through the mating
operation) between different regions of parameter
space. The Monte Carlo method, on the other hand,
follows a single structure sequentially as it moves across
the Rwp(X) hypersurface. Systematic studies to assess

the relative merits of the Monte Carlo and GA
approaches are in progress.

With regard to future development and optimization
of the GA approach, there are two basic strategies, both
of which we are currently exploring: (i) to develop
fundamental aspects of the GA technique, leading to
new and optimized strategies and procedures for
applying it to explore the Rwp(X) hypersurface; and (ii)
to consider new ways of de®ning the hypersurface such
that global optimization may be achieved more ef®-
ciently using the existing GA methodology. We now
consider each of these aspects brie¯y.

First, several plans for fundamental developments in
the GA methodology (e.g. in relation to new de®nitions
of ®tness functions and new approaches for mating and
mutation etc.) have been discussed in x4. Another
approach that we are currently considering involves a
rough local minimization (i.e. a few cycles of re®nement)
of Rwp with respect to the parameters in the set {X} for
all structures generated during the GA calculation. With
this approach, all structures in the population represent
local minima (or close to local minima) on the Rwp(X)
hypersurface, facilitating identi®cation of the global
minimum and facilitating the identi®cation (and
removal) of members of the population that are in the
same local minimum as each other. From applications of
the GA method for global optimization in other ®elds
(Brodmeir & Pretsch, 1994; Ho, 1997), it has been found

Fig. 9. Experimental (�marks), calculated (solid line) and difference (lower line) powder X-ray diffraction pro®les for the Rietveld re®nement of
ortho-thymotic acid. Re¯ection positions are marked. The calculated powder diffraction pro®le is for the ®nal re®ned crystal structure, details
of which are given in Kariuki et al. (1997).
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that the GA works best when the members of the
population are near local minima on the hypersurface.

Second, we consider some opportunities for rede®-
nition of the hypersurface explored in the GA structure
solution calculation. The applications of the GA method
described in this paper considered the conventional
weighted pro®le R factor Rwp, as used routinely in
Rietveld re®nement calculations. There is considerable
scope for modifying the de®nition of Rwp, producing a
hypersurface that may be more readily and more ef®-
ciently explored using our existing GA method. An
important opportunity in this regard is to consider
strategies in which the de®nition of R factor and/or the
range of experimental data may be altered at different
stages during the GA calculation. Thus, for example, it
may be advantageous to focus on the low-angle (low-
resolution) data at the start of the calculation, allowing
the approximate position of the structural fragment
within the unit cell to be established, and to introduce
the higher-angle (higher-resolution) data progressively
as more knowledge on the structural fragment emerges
in the later stages of the calculation.

A signi®cant advantage of considering Rwp(X) (or
rede®nitions thereof) in the structure-solution calcula-
tion is that it is based purely on experimental data and is
not biased by the introduction of any arbitrary param-
eters or assumptions. An alternative opportunity for
rede®ning the hypersurface, however, is to combine the
powder diffraction data with other `direct-space' infor-
mation, such as the computed potential energy E(X).
Thus, an alternative strategy for direct-space structure
solution is to consider a new hypersurface S(X), de®ned
as an appropriate function of E(X) and Rwp(X): i.e.
S �f�E;Rwp). Provided a reliable potential energy
parameterization is available for the system of interest
(and is known a priori to be reliable), this type of
combined approach may have signi®cant advantages
over the consideration of Rwp(X) alone. The key to this
approach lies in appropriate de®nition of the function
f, and in this regard we are currently exploring the
optimization of this function for use in direct-space

structure solution. We note, however, that it is only valid
to consider E(X) in structure solution calculations when
the structural fragment represents a `chemically
sensible' unit, such as a complete molecule [this, of
course, is not a limitation with regard to exploration of
the Rwp(X) hypersurface]. Finally, we note that GA
methods using only the computed potential energy have
been applied previously (Bush et al., 1995) for crystal-
structure prediction, and other alternative structure
solution stategies based on consideration of computed
energies have been reported (Hammond et al., 1997).

These future developments of the GA methodology,
together with rigorous optimization of the strategies for
its application, will signi®cantly widen the scope and
increase the ef®ciency of the GA approach for structure
solution from powder diffraction data. Such develop-
ments will lead to faster and more reliable structure
solution and will open up opportunities for exploring
hypersurfaces of greater complexity.
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